Machine Learning in Finance

Using the classification model and self-service BI we helped a financial service company to optimize pricing policy. The model takes into consideration customers’ behavior and adjusts pricing depending on individual financial profiles.


Better offer personalization for each individual customer

The company wants to use tools for personalized recommendations of new financial products which will automatically take into account the preferences of each individual customer and find the best offer for them.

Improve existing scoring systems

The company wants to decrease the number of customers who were unable to pay off the loan. There was a need to create additional tool which could support existing scoring systems using alternative data sources and automatically detect hidden behavioral patterns.

Flexible analytics tool to create ad-hoc analysis by business users

A slight modification of the report required a lot of work for the company’s analysts. The company wants to improve existing analytical systems so that users can conduct ad-hoc analysis by themselves.
We designed and implemented a Machine Learning solution together with Business Intelligence self-service software with a data warehouse. The business users could be self-sufficient in the development of dashboards and reports – in order to analyze the relationship between sales and customers. A developed Business Intelligence system supports marketing, operations, business, sales, and HR departments.

​Custom machine learning model for scoring

We created a machine learning algorithm that calculates risk ratio and adjusts prices for each client individually based on their financial profile.

Custom recommendation engines

We created a data-driven recommendation engine that analyzes a huge amount of transactional and customer behavior data to increase sales, overall business performance, and client engagement as well as satisfaction. This solution was used to support up-sell and cross-sell campaigns.

Implementation of self-service BI for ad-hoc reporting

We implemented a data warehouse, OLAPs, and self-service BI, which gave the possibility to increase efficiency. Reports were produced faster and insights were shared across the organization.
​Human interaction and report development time was reduced by implementing analytical cubes that provide the end-user with multiple analytical options. Visualization tools help to navigate through the data universe and analyze links between occurrences – all in a much more intuitive and user-friendly way.


Lower costs of unpaid loans


C-level executives hours saved each month